Klaim Artikel Anda
Verifikasi kepemilikan artikel akademik
Apakah artikel-artikel ini milik Anda?
Daftarkan diri Anda sebagai author untuk mengklaim artikel dan dapatkan profil akademik terverifikasi dengan fitur lengkap.
Badge Verifikasi
Profil terverifikasi resmi
Statistik Lengkap
H-index, sitasi, dan metrik
Visibilitas Tinggi
Tampil di direktori author
Kelola Publikasi
Dashboard artikel terpadu
Langkah-langkah Klaim Artikel:
- 1. Daftar akun author dengan email akademik Anda
- 2. Verifikasi email dan lengkapi profil
- 3. Login dan buka menu "Klaim Artikel"
- 4. Cari dan klaim artikel Anda
- 5. Tunggu verifikasi dari admin (1-3 hari kerja)
Menampilkan 1–3 dari 3 artikel
Comparison of Multiple Linear Regression and Random Forest for Predicting Student Final Grades Using Google Colab
Digital Business Intelligence Journal
Vol 2
, No 1
(2026)
A student's learning success is largely determined by their academic evaluation. Estimating a student's final grade can assist educational institutions in conducting initial assessments of academic achievement. This study aims to analyze the performance of the Multiple Linear Regression (MLR) and Random Forest (RF) algorithms in predicting students' final grades using Google Colab. This research method uses a quantitative approach using secondary data that includes age, mid-term exam scores, fin...
Sumber Asli
Google Scholar
DOI
Personal Data Protection Regulations in Indonesia: Implications for E-Business Cybersecurity
Digital Business Intelligence Journal
Vol 1
, No 2
(2025)
This study analyzes the impact of implementing Indonesia’s Law No. 27 of 2022 on Personal Data Protection (PDP Law) on cybersecurity in the e-business sector. Using a normative qualitative approach through literature analysis, this research examines the regulation’s implications for technical infrastructure, compliance procedures, and human resource capacity development within e-business operations. The findings indicate that although the PDP Law provides a comprehensive legal framework and huma...
Sumber Asli
Google Scholar
DOI
Analisis Sentimen Ulasan Aplikasi Shopee Menggunakan Algoritma Random Forest, Naïve Bayes, dan Support Vector Machine di Kota Semarang
Digital Business Intelligence Journal
Vol 1
, No 1
(2024)
The growth of e-commerce in Indonesia has led to the emergence of various online shopping platforms, with Shopee being one of the most popular in Semarang City. User reviews on the Shopee application serve as a valuable data source for analyzing customer satisfaction levels; however, the large volume of data requires a systematic and accurate analytical approach. This study aims to analyze user review sentiments of the Shopee application using three machine learning algorithms: Random Forest, Na...
Sumber Asli
Google Scholar