Comparasi Model Deepseek dan OpenAI dalam Meningkatkan Efisiensi Pencarian Informasi pada Sistem Pencarian Algoritma

Dinamik
Universitas Stikubank

📄 Abstract

This study evaluates the efficiency of two artificial intelligence models, DeepSeek and OpenAI, in generating code for algorithmic systems. Efficiency is assessed through execution speed, code accuracy, and the number of code characters produced. Data were collected from 100 tests covering search, sorting, graph, dynamic programming, optimization, data processing, text, and machine learning algorithms. The objective is to compare the performance of both models to support the development of efficient information retrieval systems. The method involves algorithm testing with statistical analysis of execution time, accuracy, and code length. Results indicate that DeepSeek has an average execution time of 28.74 seconds, slightly slower than OpenAI’s 28.49 seconds. However, DeepSeek’s accuracy (85.88%) surpasses OpenAI’s (85.03%). The average number of code characters is identical at 96.35 characters. The study concludes that DeepSeek excels in accuracy, while OpenAI is faster in certain cases, providing valuable insights for developers in selecting AI models for information retrieval applications.

ℹ️ Informasi Publikasi

Tanggal Publikasi
02 January 2026
Volume / Nomor / Tahun
Volume 31, Nomor 1, Tahun 2026

📝 HOW TO CITE

Mahenra, Ridwan; Setiawan, Dandi, "Comparasi Model Deepseek dan OpenAI dalam Meningkatkan Efisiensi Pencarian Informasi pada Sistem Pencarian Algoritma," Dinamik, vol. 31, no. 1, Jan. 2026.

ACM
ACS
APA
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver

🔗 Artikel Terkait dari Jurnal yang Sama

📊 Statistik Sitasi Jurnal

Tren Sitasi per Tahun