Klaim Artikel Anda
Verifikasi kepemilikan artikel akademik
Apakah artikel-artikel ini milik Anda?
Daftarkan diri Anda sebagai author untuk mengklaim artikel dan dapatkan profil akademik terverifikasi dengan fitur lengkap.
Badge Verifikasi
Profil terverifikasi resmi
Statistik Lengkap
H-index, sitasi, dan metrik
Visibilitas Tinggi
Tampil di direktori author
Kelola Publikasi
Dashboard artikel terpadu
Langkah-langkah Klaim Artikel:
- 1. Daftar akun author dengan email akademik Anda
- 2. Verifikasi email dan lengkapi profil
- 3. Login dan buka menu "Klaim Artikel"
- 4. Cari dan klaim artikel Anda
- 5. Tunggu verifikasi dari admin (1-3 hari kerja)
Menampilkan 1–1 dari 1 artikel
Evaluasi Kinerja Model Long Short-Term Memory dan Gated Recurrent Unit untuk Prediksi Magnitude Gempa Bumi Di Indonesia
Nugraha, Giananda Saktika
; Priyambodo, Pamungkas Haryo
; Rahmayuna, Novita
; Hidayati, Nurtriana
Dinamik
Vol 31
, No 1
(2026)
This study aims to evaluate and compare the performance of two neural network architectures under the Recurrent Neural Network (RNN) category, namely Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM), in predicting earthquake magnitude in Indonesia. The dataset used consists of daily earthquake magnitude records from 2008 to 2023, preprocessed into time series format and normalized using the MinMax method. The training process was conducted using various combinations of batch size and...
Sumber Asli
Google Scholar
DOI