📅 27 December 2025
DOI: 10.51903/elkom.v18i2.3332

Analisa Citra Warna Darah Reject Berdasarkan Fitur Histogram Menggunakan KNN

Jurnal Elektronika dan Komputer
Universitas Sains dan Teknologi Komputer

📄 Abstract

Manual quality assessment of Platelet Concentrate (TC) is highly subjective and inconsistent, necessitating an objective, automated classification system. This study aims to develop a computationally efficient, low-cost model for TC quality classification using Histogram Features extracted from grayscale images combined with the K-Nearest Neighbor (KNN) algorithm. The methodology employed critical preprocessing steps, including StandardScaler for normalization and SMOTE for balancing the training data, followed by optimization across K=1 to K=30. The optimal model achieved a maximum accuracy of 69.23% at K=6, with an F1-Score of 71.43%, confirming robust performance on the imbalanced testing set. The results validate the effectiveness of the Histogram-KNN approach as a consistent and reliable decision support system for rapid TC quality screening in resource-limited settings.

🔖 Keywords

#Platelete Concentrate (TC); K-Nearest Neighbor (KNN); Histogram Features; SMOTE; Quality Classification; Platelete Concentrate (TC); K-Nearest Neighbor (KNN); Histogram Features; SMOTE; Quality Classification

ℹ️ Informasi Publikasi

Tanggal Publikasi
27 December 2025
Volume / Nomor / Tahun
Volume 18, Nomor 2, Tahun 2025

📝 HOW TO CITE

Achhmad Agam; Achhmad Agam; Supatman, "Analisa Citra Warna Darah Reject Berdasarkan Fitur Histogram Menggunakan KNN," Jurnal Elektronika dan Komputer, vol. 18, no. 2, Dec. 2025.

ACM
ACS
APA
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver

🔗 Artikel Terkait dari Jurnal yang Sama

📊 Statistik Sitasi Jurnal